Tartan: A retrieval-based socialbot powered by a dynamic finite-state machine architecture
Published in 2nd Proceedings of Alexa Prize (Alexa Prize 2018)., 2018
This paper describes the Tartan conversational agent built for the 2018 Alexa Prize Competition. Tartan is a non-goal-oriented socialbot focused around providing users with an engaging and fluent casual conversation. Tartan's key features include an emphasis on structured conversation based on flexible finite-state models and an approach focused on understanding and using conversational acts. To provide engaging conversations, Tartan blends script-like yet dynamic responses with data-based generative and retrieval models. Unique to Tartan is that our dialog manager is modeled as a dynamic Finite State Machine. To our knowledge, no other conversational agent implementation has followed this specific structure.
Citation: George Larionov, Zachary Kaden, Hima Varsha Dureddy, Gabriel Bayomi T. Kalejaiye, Mihir Kale, Srividya Pranavi Potharaju, Ankit Parag Shah, Alexander I Rudnicky, “Tartan: A retrieval-based socialbot powered by a dynamic finite-state machine architecture”, 2nd Proceedings of Alexa Prize (Alexa Prize 2018).